Tissue- and Cell-Specific Mitochondrial Defect in Parkin-Deficient Mice
نویسندگان
چکیده
منابع مشابه
Tissue- and Cell-Specific Mitochondrial Defect in Parkin-Deficient Mice
Loss of Parkin, encoded by PARK2 gene, is a major cause of autosomal recessive Parkinson's disease. In Drosophila and mammalian cell models Parkin has been shown in to play a role in various processes essential to maintenance of mitochondrial quality, including mitochondrial dynamics, biogenesis and degradation. However, the relevance of altered mitochondrial quality control mechanisms to neuro...
متن کاملNon-motor behavioural impairments in parkin-deficient mice.
Mutations in the parkin gene are the major cause of early-onset familial Parkinson's disease (PD). We previously reported the generation and analysis of a knockout mouse carrying a deletion of exon 3 in the parkin gene. F1 hybrid pa+/- mice were backcrossed to wild-type C57Bl/6 for three more generations to establish a pa-/-(F4) mouse line. The appearance of tyrosine hydroxylase-positive neuron...
متن کاملParkin-deficient mice are not a robust model of parkinsonism.
Mutations in the human parkin gene cause autosomal recessive juvenile parkinsonism, a heritable form of Parkinson's disease (PD). To determine whether mutations in the mouse parkin gene (Park2) also result in a parkinsonian phenotype, we generated mice with a targeted deletion of parkin exon 2. Using an extensive behavioral screen, we evaluated neurological function, motor ability, emotionality...
متن کاملMuscle creatine kinase-deficient mice. II. Cardiac and skeletal muscles exhibit tissue-specific adaptation of the mitochondrial function.
Functional properties of in situ mitochondria and of mitochondrial creatine kinase were studied in saponin-skinned fibers taken from normal and M-creatine kinase-deficient mice. In control animals, apparent Km values of mitochondrial respiration for ADP in cardiac (ventricular) and slow-twitch (soleus) muscles (137 +/- 16 microM and 209 +/- 10 microM, respectively) were manyfold higher than tha...
متن کاملTissue kallikrein-deficient mice display a defect in renal tubular calcium absorption.
Renal tubular calcium (RTCa) transport is one of the main factors that determine serum Ca concentration and urinary Ca excretion. The distal convoluted and connecting tubules reabsorb a significant fraction (10%) of filtered Ca. These tubule segments also synthesize in large abundance tissue kallikrein (TK), a major kinin-forming enzyme. Tested was the hypothesis that TK and kinins are involved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2014
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0099898